Wallman representations of hyperspaces

Wojciech Stadnicki (University of Wrocław)

January 31, 2013 Winter School, Hejnice

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces

C-spaces

We say X is a C-space (or X has property C) if for each sequence U_1, U_2, \ldots of open covers of X, there exists a sequence V_1, V_2, \ldots , such that:

- each \mathcal{V}_i is a family of pairwise disjoint open subsets of X
- $\mathcal{V}_i \prec \mathcal{U}_i$ (\mathcal{V}_i refines \mathcal{U}_i , i.e. $\forall V \in \mathcal{V}_i \exists U \in \mathcal{U}_i V \subseteq U$)
- $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ is a cover of X

C-spaces

We say X is a C-space (or X has property C) if for each sequence U_1, U_2, \ldots of open covers of X, there exists a sequence V_1, V_2, \ldots , such that:

- each \mathcal{V}_i is a family of pairwise disjoint open subsets of X
- $\mathcal{V}_i \prec \mathcal{U}_i$ (\mathcal{V}_i refines \mathcal{U}_i , i.e. $\forall V \in \mathcal{V}_i \exists U \in \mathcal{U}_i V \subseteq U$)
- $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ is a cover of X

finite dimension \Rightarrow property $C \Rightarrow$ weakly infinite dimension

If X is a metric continuum of dimension ≥ 2 then its hyperspace C(X) is not a C-space.

伺 ト く ヨ ト く ヨ ト

If X is a metric continuum of dimension ≥ 2 then its hyperspace C(X) is not a C-space.

Theorem

Suppose X is a 1-dimensional hereditarily indecomposable metric continuum. Then either dim C(X) = 2 or C(X) is not a C-space.

If X is a metric continuum of dimension ≥ 2 then its hyperspace C(X) is not a C-space.

Theorem

Suppose X is a 1-dimensional hereditarily indecomposable metric continuum. Then either dim C(X) = 2 or C(X) is not a C-space.

Question

Are above theorems true for non-metric continua?

If X is a metric continuum of dimension ≥ 2 then its hyperspace C(X) is not a C-space.

Theorem

Suppose X is a 1-dimensional hereditarily indecomposable metric continuum. Then either dim C(X) = 2 or C(X) is not a C-space.

Question

Are above theorems true for non-metric continua? Answer: Yes.

Reduce the non-metric case to the metric one by applying Löwenheim-Skolem teorem. Then use the already known theorems. This approach was presented by K. P. Hart on the Winter School in 2012.

・ 同・ ・ ヨ・・・

伺 ト イ ヨ ト イ ヨ ト

Each (distributive and separative) lattice L corresponds to the Wallman space wL, which consists of all ultrafilters on L.

Each (distributive and separative) lattice *L* corresponds to the Wallman space *wL*, which consists of all ultrafilters on *L*. For $a \in L$ let $\hat{a} = \{u \in wL : a \in u\}$. We define the topology in *wL* taking the family $\{\hat{a} : a \in L\}$ as a base for closed sets.

Each (distributive and separative) lattice *L* corresponds to the Wallman space *wL*, which consists of all ultrafilters on *L*. For $a \in L$ let $\hat{a} = \{u \in wL : a \in u\}$. We define the topology in *wL* taking the family $\{\hat{a} : a \in L\}$ as a base for closed sets. If *L* is a countable (normal) lattice then *wL* is a compact metric space.

Each (distributive and separative) lattice *L* corresponds to the Wallman space *wL*, which consists of all ultrafilters on *L*. For $a \in L$ let $\hat{a} = \{u \in wL : a \in u\}$. We define the topology in *wL* taking the family $\{\hat{a} : a \in L\}$ as a base for closed sets. If *L* is a countable (normal) lattice then *wL* is a compact metric space.

Fact

Let L be a sublattice of 2^X . The function $q: X \to wL$ given by $q(x) = \{a \in L : x \in a\}$ is a continuous surjection.

Definition

A property \mathcal{P} is elementarily reflected if:

for any compact space X with the property ${\mathcal P}$ and for any $L\prec 2^X$

its Wallman representation wL also has \mathcal{P} .

伺 ト イ ヨ ト イ ヨ ト

Definition

A property \mathcal{P} is *elementarily reflected* if: for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ its Wallman representation wL also has \mathcal{P} .

Definition

A property \mathcal{P} is elementarily reflected by submodels if: for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ of the form $L = 2^X \cap \mathcal{M}$, where $2^X \in \mathcal{M}$ and $\mathcal{M} \prec \mathcal{H}(\kappa)$ (for a large enough regular κ), its Wallman representation wL also has \mathcal{P} .

Definition

A property \mathcal{P} is *elementarily reflected* if: for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ its Wallman representation wL also has \mathcal{P} .

Definition

A property \mathcal{P} is elementarily reflected by submodels if: for any compact space X with the property \mathcal{P} and for any $L \prec 2^X$ of the form $L = 2^X \cap \mathcal{M}$, where $2^X \in \mathcal{M}$ and $\mathcal{M} \prec \mathcal{H}(\kappa)$ (for a large enough regular κ), its Wallman representation wL also has \mathcal{P} .

- Connectedness is elementarily reflected.
- The dimension dim is elementarily reflected (including dim $= \infty$).
- Hereditary indecomposability is elementarily reflected.

- 4 周 ト 4 三 ト 4 三 ト

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces

<ロ> <部> <部> <き> <き> <き> <き</p>

Suppose dim $X \ge 2$. Take countable $\mathcal{M} \prec H(\kappa)$ such that $2^X, 2^{\mathcal{C}(X)} \in \mathcal{M}$.

Wojciech Stadnicki (University of Wrocław) Wallman representations of hyperspaces

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose dim $X \ge 2$. Take countable $\mathcal{M} \prec \mathcal{H}(\kappa)$ such that $2^X, 2^{\mathcal{C}(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{\mathcal{C}(X)} \cap \mathcal{M}$. Then *wL*, *wL*^{*} are metric continua. Moreover, dim *wL* = dim $X \ge 2$.

Suppose dim $X \ge 2$. Take countable $\mathcal{M} \prec \mathcal{H}(\kappa)$ such that $2^X, 2^{\mathcal{C}(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{\mathcal{C}(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, dim $wL = \dim X \ge 2$. By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $\mathcal{C}(wL)$ is not a \mathcal{C} -space.

Suppose dim $X \ge 2$. Take countable $\mathcal{M} \prec \mathcal{H}(\kappa)$ such that $2^X, 2^{\mathcal{C}(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{\mathcal{C}(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, dim $wL = \dim X \ge 2$. By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $\mathcal{C}(wL)$ is not a \mathcal{C} -space.

Lemma

- **1** The space wL^* is homeomorphic to C(wL).
- **2** Property C is elementarily reflected.

くほし くほし くほし

Suppose dim $X \ge 2$. Take countable $\mathcal{M} \prec \mathcal{H}(\kappa)$ such that $2^X, 2^{\mathcal{C}(X)} \in \mathcal{M}$. Let $L = 2^X \cap \mathcal{M}$ and $L^* = 2^{\mathcal{C}(X)} \cap \mathcal{M}$. Then wL, wL^* are metric continua. Moreover, dim $wL = \dim X \ge 2$. By the result of M. Levin and J. T. Rogers, Jr. for metric continua, we obtain $\mathcal{C}(wL)$ is not a \mathcal{C} -space.

Lemma

- **1** The space wL^* is homeomorphic to C(wL).
- **2** Property C is elementarily reflected.

By Lemma (1) wL^* is not a *C*-space. By Lemma (2), neither is C(X).

くほし くほし くほし

200

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$.

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of *wL*, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$).

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$). Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \ldots$ is a sequence of open covers of X.

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of wL, consisting of basic sets (i.e. for all $U_{ik} \in \mathcal{U}_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$). Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \ldots, U'_{ik_i}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \ldots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space.

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of *wL*, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$. Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \dots, U'_{ik}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \dots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space. So we have: $2^{X} \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots, G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n}$ such that: (1) $\bigwedge_{i=1}^{n} \left(\bigwedge_{1 \leq j < j' \leq m_i} \left(\mathcal{G}_{ij} \cup \mathcal{G}_{ij'} = X \right) \right)$ (2) $\bigwedge_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \left(\bigvee_{i'=1}^{k_i} \left(G_{ij} \cap F_{ij'} = F_{ij'} \right) \right) \right)$ (3) $\bigcap_{i=1}^{n} \bigcap_{i=1}^{m_i} G_{ii} = \emptyset$.

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of *wL*, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$. Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \dots, U'_{ik}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \dots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space. So we have: $2^X \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots, G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n}$ such that: (1) $\bigwedge_{i=1}^{n} \left(\bigwedge_{1 \leq j < j' \leq m_i} \left(\mathcal{G}_{ij} \cup \mathcal{G}_{ij'} = X \right) \right)$ (2) $\bigwedge_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \left(\bigvee_{i'=1}^{k_i} \left(G_{ij} \cap F_{ij'} = F_{ij'} \right) \right) \right)$ (3) $\bigcap_{i=1}^{n} \bigcap_{i=1}^{m_i} G_{ij} = \emptyset$.

By elementarity such sets G_{ij} exist in L.

Let X be a C-space, 2^X the lattice of its closed subsets and $L \prec 2^X$. Suppose $\mathcal{U}_1, \mathcal{U}_2, \ldots$ is a sequence of finite open covers of *wL*, consisting of basic sets (i.e. for all $U_{ik} \in U_i$ there is $F_{ik} \in L$ such that $U_{ik} = wL \setminus \widehat{F_{ik}}$. Define $U'_{ik} = X \setminus F_{ik}$ and $\mathcal{U}'_i = \{U'_{i1}, U'_{i2}, \dots, U'_{ik}\}$. Then $\mathcal{U}'_1, \mathcal{U}'_2, \dots$ is a sequence of open covers of X. Hence, there exists a finite sequence $\mathcal{V}'_1, \mathcal{V}'_2, \ldots, \mathcal{V}'_n$ of finite families as in the definition of a C-space. So we have: $2^{X} \models \exists G_{11}, \ldots, G_{1m_1}, G_{21}, \ldots, G_{2m_2}, \ldots, G_{n1}, \ldots, G_{nm_n}$ such that: (1) $\bigwedge_{i=1}^{n} \left(\bigwedge_{1 \leq j < j' \leq m_i} \left(\mathcal{G}_{ij} \cup \mathcal{G}_{ij'} = X \right) \right)$ (2) $\bigwedge_{i=1}^{n} \left(\bigwedge_{i=1}^{m_i} \left(\bigvee_{i'=1}^{k_i} \left(G_{ij} \cap F_{ij'} = F_{ij'} \right) \right) \right)$ (3) $\bigcap_{i=1}^{n} \bigcap_{i=1}^{m_i} G_{ii} = \emptyset$. By elementarity such sets G_{ii} exist in L. Take $V_{ii} = wL \setminus G_{ii}$ and $\mathcal{V}_i = \{V_{i1}, V_{i2}, \dots, V_{im_k}\}$. Then $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_n$ are families of pairwise disjoint sets (by (1)), open in wL. For $i \leq n$ the family \mathcal{V}_i refines \mathcal{U}_i (by (2)) and $\bigcup_{i=1}^n \mathcal{V}_i$ is a cover of wL (by (3)).

Similarly one can prove that chainability is elementarily reflected.

伺 ト く ヨ ト く ヨ ト

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

伺い イヨト イヨト

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$.

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$.

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$. Let $K_u \in C(X)$ be the only point in $\bigcap u$. So K_u is a subcontinuum of X.

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$. Let $K_u \in C(X)$ be the only point in $\bigcap u$. So K_u is a subcontinuum of X. Define $h(u^*) = q[K_u]$, where $q: X \to wL$ is the continuous surjection given by $q(x) = \{a \in L : x \in a\}$.

Similarly one can prove that chainability is elementarily reflected.

The space wL^* is homeomorphic to C(wL) (sketch of proof):

We will find a homeomorphism $h: wL^* \to C(wL)$. Let $u^* \in wL^*$. Extend it to an ultrafilter u on $2^{C(X)}$. Let $K_u \in C(X)$ be the only point in $\bigcap u$. So K_u is a subcontinuum of X. Define $h(u^*) = q[K_u]$, where $q: X \to wL$ is the continuous surjection given by $q(x) = \{a \in L : x \in a\}$. Then h does not depend on the choice of K_u and it is a homeomorphism.

Being not a C-space is elementarily reflected by submodels.

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$.

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(\mathcal{U}_i)_{i=1}^{\infty} \in H(\kappa)$ wittnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ :

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(\mathcal{U}_i)_{i=1}^{\infty} \in H(\kappa)$ wittnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ :

There exists a sequence $(\mathcal{F}_i)_{i=1}^{\infty}$ of finite subsets of 2^X such that $\bigcap \mathcal{F}_i = \emptyset$ for each *i* and for no $m \in \mathbb{N}$ and $\mathcal{G}_1, \ldots, \mathcal{G}_m$ finite subsets of 2^X , the following conditions hold simultaneously:

- for $j \leq m$ and distinct $G, G' \in \mathcal{G}_j$ their union $G \cup G' = X$,
- for $j \leq m$ and $G \in \mathcal{G}_j$ there exists $F \in \mathcal{F}_j$ such that $F \subseteq G$,
- $\bigcap (\mathcal{G}_1 \cup \ldots \cup \mathcal{G}_m) = \emptyset.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Being not a C-space is elementarily reflected by submodels.

Let X be a non-C-space, $\mathcal{M} \prec H(\kappa)$, such that $2^X \in \mathcal{M}$ and $L = 2^X \cap \mathcal{M}$. There is a sequence $(\mathcal{U}_i)_{i=1}^{\infty} \in H(\kappa)$ wittnessing that X is not a C-space. Hence, $H(\kappa)$ models the following sentence φ :

There exists a sequence $(\mathcal{F}_i)_{i=1}^{\infty}$ of finite subsets of 2^X such that $\bigcap \mathcal{F}_i = \emptyset$ for each *i* and for no $m \in \mathbb{N}$ and $\mathcal{G}_1, \ldots, \mathcal{G}_m$ finite subsets of 2^X , the following conditions hold simultaneously:

- for $j \leq m$ and distinct $G, G' \in \mathcal{G}_j$ their union $G \cup G' = X$,
- for $j \leq m$ and $G \in \mathcal{G}_j$ there exists $F \in \mathcal{F}_j$ such that $F \subseteq G$,

•
$$\bigcap(\mathcal{G}_1 \cup \ldots \cup \mathcal{G}_m) = \emptyset.$$

By elementarity $\mathcal{M} \models \varphi$. Therefore such a sequence $(\mathcal{F}_i)_{i=1}^{\infty}$ exists in \mathcal{M} . Each \mathcal{F}_i is finite, so $\mathcal{F}_i \subseteq L$. Define $\mathcal{U}'_i = \{wL \setminus \widehat{F} : F \in \mathcal{F}_i\}$. The sequence $(\mathcal{U}'_i)_{i=1}^{\infty}$ witnesses that wL is not a *C*-space.

Fact

A normal space X is weakly infinite dimensional if and only if it is a 2-C-space.

Definition

For $m \ge 2$ we say X is an *m*-*C*-space if for each sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of open covers of X such that $|\mathcal{U}_i| \le m$, there exists a sequence $\mathcal{V}_1, \mathcal{V}_2, \ldots$, such that:

- each \mathcal{V}_i is a family of pairwise disjoint open subsets of X
- $\mathcal{V}_i \prec \mathcal{U}_i$ (\mathcal{V}_i refines \mathcal{U}_i , i.e. $\forall V \in \mathcal{V}_i \exists U \in \mathcal{U}_i V \subseteq U$)
- $\bigcup_{i=1}^{\infty} \mathcal{V}_i$ is a cover of X

く 戸 と く ヨ と く ヨ と

2-*C*-spaces \supseteq 3-*C*-spaces \supseteq ... \supseteq *n*-*C*-spaces \supseteq ... \supseteq *C*-spaces

- * 同 * * ヨ * * ヨ * - ヨ

 $2\text{-}C\text{-spaces}\supseteq\ldots\supseteq n\text{-}C\text{-spaces}\supseteq\ldots\supseteq C\text{-spaces}$

Corollary

- Weak infinite dimension is elementarily reflected.
- Strong infinite dimension is elementarily reflected by submodels.

 $2\text{-}C\text{-spaces}\supseteq\ldots\supseteq n\text{-}C\text{-spaces}\supseteq\ldots\supseteq C\text{-spaces}$

Corollary

- Weak infinite dimension is elementarily reflected.
- Strong infinite dimension is elementarily reflected by submodels.

Corollary

If there exist a compact space which is weakly infinite dimensional but fails to be a C-space, then there exists such a space which is metric.