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C-spaces

We say X is a C -space (or X has property C ) if for each sequence
U1,U2, . . . of open covers of X , there exists a sequence V1,V2, . . .,
such that:

each Vi is a family of pairwise disjoint open subsets of X

Vi ≺ Ui (Vi refines Ui , i.e. ∀ V ∈ Vi ∃U ∈ Ui V ⊆ U)⋃∞
i=1 Vi is a cover of X

finite dimension ⇒ property C ⇒ weakly infinite dimension
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Theorem (Levin, Rogers 1999)

If X is a metric continuum of dimension ≥ 2 then its hyperspace
C (X ) is not a C -space.

Theorem

Suppose X is a 1-dimensional hereditarily indecomposable metric
continuum. Then either dim C (X ) = 2 or C (X ) is not a C -space.

Question

Are above theorems true for non-metric continua?
Answer: Yes.

Reduce the non-metric case to the metric one by applying
Löwenheim-Skolem teorem. Then use the already known theorems.
This approach was presented by K. P. Hart on the Winter School
in 2012.
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For a compact space X consider the lattice 2X which consists of all
closed subsets of X .

Each (distributive and separative) lattice L corresponds to the
Wallman space wL, which consists of all ultrafilters on L.
For a ∈ L let â = {u ∈ wL : a ∈ u}. We define the topology in wL
taking the family {â : a ∈ L} as a base for closed sets.
If L is a countable (normal) lattice then wL is a compact metric
space.

Fact

Let L be a sublattice of 2X . The function q : X → wL given by
q(x) = {a ∈ L : x ∈ a} is a continuous surjection.
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Definition

A property P is elementarily reflected if:
for any compact space X with the property P and for any L ≺ 2X

its Wallman representation wL also has P.

Definition

A property P is elementarily reflected by submodels if:
for any compact space X with the property P and for any L ≺ 2X

of the form L = 2X ∩M, where 2X ∈M and M≺ H(κ) (for a
large enough regular κ), its Wallman representation wL also has P.

Connectedness is elementarily reflected.

The dimension dim is elementarily reflected (including
dim =∞).

Hereditary indecomposability is elementarily reflected.
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If dimX ≥ 2 then C (X ) is not a C -space:

Suppose dim X ≥ 2. Take countable M≺ H(κ) such that
2X , 2C(X ) ∈M. Let L = 2X ∩M and L∗ = 2C(X ) ∩M. Then wL,
wL∗ are metric continua. Moreover, dim wL = dim X ≥ 2.
By the result of M. Levin and J. T. Rogers, Jr. for metric
continua, we obtain C (wL) is not a C -space.

Lemma

1 The space wL∗ is homeomorphic to C (wL).

2 Property C is elementarily reflected.

By Lemma (1) wL∗ is not a C -space.
By Lemma (2), neither is C (X ).
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Property C is elementarily reflected (proof):

Let X be a C -space, 2X the lattice of its closed subsets and
L ≺ 2X . Suppose U1,U2, . . . is a sequence of finite open covers of
wL, consisting of basic sets (i.e. for all Uik ∈ Ui there is Fik ∈ L

such that Uik = wL \ F̂ik). Define U ′ik = X \ Fik and
U ′i = {U ′i1,U ′i2, . . . ,U ′iki}. Then U ′1,U ′2, . . . is a sequence of open
covers of X . Hence, there exists a finite sequence V ′1,V ′2, . . . ,V ′n of
finite families as in the definition of a C -space. So we have:
2X |= ∃G11, . . . ,G1m1 ,G21, . . .G2m2 , . . . , Gn1, . . . ,Gnmn such that:

(1)
∧n

i=1

(∧
1≤j<j ′≤mi

(
Gij ∪ Gij ′ = X

))
(2)

∧n
i=1

(∧mi
j=1

(∨ki
j ′=1

(
Gij ∩ Fij ′ = Fij ′

)))
(3)

⋂n
i=1

⋂mi
j=1 Gij = ∅.

By elementarity such sets Gij exist in L. Take Vij = wL \ Ĝij and
Vi = {Vi1,Vi2, . . . ,Vimk

}. Then V1,V2, . . . ,Vn are families of
pairwise disjoint sets (by (1)), open in wL. For i ≤ n the family Vi
refines Ui (by (2)) and

⋃n
i=1 Vi is a cover of wL (by (3)).
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Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).

Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).

Let Ku ∈ C (X ) be the only point in
⋂

u.
So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .

Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.

Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Remark

Similarily one can prove that chainability is elementarily reflected.

The space wL∗ is homeomorphic to C (wL) (sketch of proof):

We will find a homeomorphism h : wL∗ → C (wL).
Let u∗ ∈ wL∗. Extend it to an ultrafilter u on 2C(X ).
Let Ku ∈ C (X ) be the only point in

⋂
u.

So Ku is a subcontinuum of X .
Define h(u∗) = q[Ku], where q : X → wL is the continuous
surjection given by q(x) = {a ∈ L : x ∈ a}.
Then h does not depend on the choice of Ku and it is a
homeomorphism.

Wojciech Stadnicki (University of Wroc law) Wallman representations of hyperspaces



Proposition

Being not a C -space is elementarily reflected by submodels.

Let X be a non-C -space, M≺ H(κ), such that 2X ∈M and
L = 2X ∩M. There is a sequence (Ui )∞i=1 ∈ H(κ) wittnessing that
X is not a C -space. Hence, H(κ) models the following sentence ϕ:

There exists a sequence (Fi )
∞
i=1 of finite subsets of 2X such that⋂

Fi = ∅ for each i and for no m ∈ N and G1, . . . ,Gm finite
subsets of 2X , the following conditions hold simultaneously:

for j ≤ m and distinct G ,G ′ ∈ Gj their union G ∪ G ′ = X ,

for j ≤ m and G ∈ Gj there exists F ∈ Fj such that F ⊆ G ,⋂
(G1 ∪ . . . ∪ Gm) = ∅.

By elementarity M |= ϕ. Therefore such a sequence (Fi )
∞
i=1 exists

inM. Each Fi is finite, so Fi ⊆ L. Define U ′i = {wL \ F̂ : F ∈ Fi}.
The sequence (U ′i )∞i=1 witnesses that wL is not a C -space.
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Fact

A normal space X is weakly infinite dimensional if and only if it is
a 2-C -space.

Definition

For m ≥ 2 we say X is an m-C -space if for each sequence
U1,U2, . . . of open covers of X such that |Ui | ≤ m, there exists a
sequence V1,V2, . . ., such that:

each Vi is a family of pairwise disjoint open subsets of X

Vi ≺ Ui (Vi refines Ui , i.e. ∀ V ∈ Vi ∃U ∈ Ui V ⊆ U)⋃∞
i=1 Vi is a cover of X
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2-C -spaces ⊇ 3-C -spaces ⊇ . . . ⊇ n-C -spaces ⊇ . . . ⊇ C -spaces

Corollary

Weak infinite dimension is elementarily reflected.

Strong infinite dimension is elementarily reflected by
submodels.

Corollary

If there exist a compact space which is weakly infinite dimensional
but fails to be a C -space, then there exists such a space which is
metric.
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